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1. Introduction 11 

Hydraulic routing involves solving the governing equations of conservation of mass and 12 

momentum, widely known as the Saint-Venant (S-V) equations (Chanson, 2004). Whereas 13 

hydraulic routing models represent the most accurate method for flood routing in theory (Kim 14 

and Georgakakos, 2014), they require large amounts of data to prescribe the fixed boundary 15 

conditions of channel geometry and elaborate numerical integration to ensure stability and 16 

accuracy(Szymkiewicz, 2010). Hydrologic routing models, on the other hand, are significantly 17 

simpler and easier to use but can only provide predictions at a limited number of locations due to 18 

their lumped nature (Kim and Georgakakos, 2014; Mazzoleni et al., 2018; McCuen, 2004; Noh 19 

et al., 2018). Depending on the flow type, accuracy requirement, data availability, and computing 20 

power, different hydrologic routing models may be used. Kim and Georgakakos (2014) provided 21 

a historical review of hydrologic routing models, including the reservoir routing(Goodrich, 22 

1931), Muskingum (McCarthy, 1938), Lag and K (Linsley et al., 1949), and Muskingum-Cunge 23 

(Cunge, 1969), and introduced  a new conceptual river routing method based on nonlinear 24 

cascade of reservoirs. Storage-based routing models are among the oldest and most widely used 25 

in hydrology, including engineering hydrology and operational flood forecasting (Fread and Hsu, 26 

1993; Nourani et al., 2009). The recently launched National Water Model (NWS, 2021a) also 27 

uses Muskingum-Cunge as one of the channel routing methods and level pool routing for 28 

reservoirs and lakes. As such, advancing hydrologic routing continues to be a significant topic of 29 

research. The purpose of this paper is to present new analytical exact and semi-analytical 30 

approximate solutions and their applications for nonlinear reservoir routing with general power-31 

law storage where the underlying level pool assumption is justified (see Ayalew et al., 2014; 32 

Bentura and Michel, 1997; Chi et al., 2015; Gupta, 2004; Gupta and Waymire, 1998; Mandapaka 33 
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Venkata, 2009; Mantilla et al., 2006; Mantilla and Gupta, 2005; Menabde and Sivapalan, 2001; 34 

Reggiani et al., 2001; Small et al., 2013 just to name several). 35 

The concept of nonlinear storage in routing is well known. Though the wide channel 36 

simplification of the Manning’s equation (Orlandini and Rosso, 1998; Yu and Lim, 2003) and 37 

the level pool assumption remain controversial (Fread et al., 1978; Goodell and Wahlin, 2009), 38 

nonlinear hydrologic routing has been used extensively in hydrologic modeling and prediction, 39 

ranging from routing flow through a channel or a storage structure to simulating flow through 40 

networks of channels as in CUENCAS (Mantilla and Gupta, 2005) and TOPKAPI (Todini and 41 

Ciarapica, 2001). In what follows, a brief background on nonlinear routing with power-law 42 

storage as it pertains to the development of this paper is presented. The continuity equation for 43 

storage routing is given by (Carter and Godfrey, 1960): 44 

���� = � − � (1) 

where �, �, and � denote the inflow, outflow and storage at time �, respectively. In most real-45 

world applications, the storage and outflow are not known jointly and hence an additional 46 

equation is needed to solve Eq. (1). This closing equation relates storage with discharge and is 47 

referred to as the storage-outflow relationship, or storage function (Chow et al., 1988; Sugiyama 48 

et al., 1997). Numerous studies (Basha, 2000, 1995, 1994; Boyd et al., 1979; Sugiyama et al., 49 

1997; Tallaksen, 1995 to name a few) have postulated that the storage-outflow relationship may 50 

be expressed as the following power-law function:51 

� = ��	 (2) 

where � and 
 denote the storage coefficient and exponent, respectively. In Eq. (2), the 52 

assumptions that the storage function is time-invariant or “uniformly nonlinear” (Dooge, 2005), 53 

and that � is a proper function of � are implicitly considered. In Eq. (2), the coefficient � 54 
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measures the ratio between the capacity of the reservoir and that of the discharge from the 55 

reservoir. The coefficient � is larger for a large storage capacity with small outflow and smaller 56 

for a small reservoir with large outflow. If an outlet is so large that it is not restricting flow at all, 57 

� is effectively zero (Mitchell, 1962). For 
 ≠ 1, Eq. (1) becomes nonlinear reservoir routing. 58 

The value of 
 determines the relative shape of the outflow hydrograph and generally ranges 59 

between 0 and 1 with an average of 0.5 for unconfined aquifers (Hammond and Han, 2006).  60 

Mitchell (1962) suggested that the lower bound of 
 is about 0.67 which corresponds to the 61 

critical depth of a reservoir with vertical side walls. However, the mathematical lower bound of 
 62 

is 0. In general, reservoirs with flatter side slopes have larger 
 (Mitchell, 1962). Sugiyama et al. 63 

(1997) studied dozens of flood events in catchments of varying sizes and concluded that 
 varies 64 

between 0.3 and 1 with an average of 0.6. Smaller 
 corresponds to concave recession curves 65 

whereas 
 larger than 1 corresponds to convex curves (Hammond and Han, 2006). Note that 
 is 66 

dimensionless, and the dimension of parameter � depends on 
 and equals [�]���	 [�]	 where 67 

[�] and [�] are length and time dimensions, respectively.  68 

 Many previous works have similarly analyzed the physical interpretation of the exponent 
 69 

with a focus on the recession curves of nonlinear routing with no inflow (Botter et al., 2009; 70 

Boyd et al., 1979). With inflow, the effect of 
 on the shape of the outflow hydrograph is more 71 

complex. If 
 = 1, Eq. (2) becomes linear and, hence, Eq. (1) refers to linear reservoir routing. 72 

Most real-world hydrological systems, however, do not behave as linear storages (Dooge, 2005; 73 

Kim and Georgakakos, 2014). To address this limitation, many authors presented a variety of 74 

modeling approaches, such the cascading linear reservoirs (Chow et al., 1988; Nash, 1957), 75 

multilinear methods (Camacho and Lees, 1999; Perumal, 1992; Sahoo, 2013) and piecewise 76 

linear approximation of the nonlinear storage processes (Ostrowski, 2010). Basha (1995) offered 77 
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an approximate solution via perturbation expansion around nominal 
. Glynn and Glynn (1996) 78 

presented a diffusion approximation for a network of nonlinear reservoirs with power-law release 79 

rules. To the best of the authors’ knowledge, however, no exact general solutions have been 80 

reported to date for Eqs. (1) and (2) with 
 ≠ 1. A number of studies, including Hughes and 81 

Murrell (1986), Basha (1995), David (2009) and Del Giudice et al. (2014), suggested that no 82 

analytical solution exists for non-zero inflows unless 
 equals 1/2 or 1. They presented several 83 

numerical solution methods and postulated that the accuracy of the solutions depends on the time 84 

interval used in the numerical integration. In this paper, we present an exact implicit solution for 85 

nonlinear routing of Eq. (1) with the general power-law storage function of Eq. (2) for constant 86 

inflow. The solution may be parametrized either by using statistical methods similarly to the 87 

Muskingum method (Linsley et al., 1949) or by using hydraulic properties of the channels 88 

similarly to the Muskingum-Cunge method (Chow et al., 1988). In this work, we expressed the 89 

power-law storage function parameters in terms of the hydraulic properties of the channels and 90 

the geometry of the storage structure. Because any real-world inflow hydrograph may be 91 

represented by a series of pulses of arbitrary widths, the exact solution is completely general. 92 

The proposed solution may therefore be used in a wide range of applications including modeling, 93 

design, forecasting and control of flow through single or cascades of reservoirs, and networks of 94 

channels. This paper is organized as follows. Section 2 presents the exact implicit solution of 95 

Eqs. (1) and (2). Section 3 presents the general expressions for the parameters of the power-law 96 

storage functions commonly encountered in reservoir and channel routing in the real world. 97 

Sections 4 and 5 present approximate explicit solutions and simple applications of the proposed 98 

solutions for different types of routing, respectively. Section 6 provides discussion. Section 7 99 

presents the conclusions and future research recommendations. 100 
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2. Exact solution for nonlinear routing with power-law storage function 101 

Using the chain rule, we may rewrite Eq. (1) as: 102 

���� = � − ���/�� (3) 

If the storage function is of the power-law type of Eq. (2), there exist real-valued parameters � 103 

and � such that: 104 

1��/�� = ��� (4) 

where � = 1/(� 
) and � = 1 − 
. Combining Eqs. (3) and (4), we have the following 105 

nonhomogeneous nonlinear ordinary differential equation: 106 

���� = ���(� − �) (5) 

where the parameter �  is the dimensionless, and the parameter � has a dimension [�]���  [�]��� 107 

where [�] and [�] are length and time dimensions, respectively.  108 

Note that Eq. (5) is identical to the Horton-Izzard model (Dooge, 1973; Ponce, 2014) commonly 109 

used to model nonlinear overland flow. Moore and Bell (2001) described the application of Eq. 110 

(5) in operational flood forecasting in the United Kingdom and show the analogy between the 111 

nonlinear power-law storage function and the Horton-Izzard equation. They also postulated that 112 

such nonlinear storages commonly occur in many physical elements in the rainfall-runoff 113 

processes, and that it is reasonable to extend the nonlinear storage model to a wide range of 114 

“input-storage-output system” such as a soil column, aquifer storage or surface storage at 115 

catchment scale. 116 

Various modeling efforts reported in the literature using the Horton-Izzard equation may be 117 

replicated with Eq. (5) following simple mathematical manipulations. For example, Moore and 118 
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Bell (2001) used an inverse definition of � = � �� to describe specific discharge on a sloping 119 

plane following Dooge (1973) and Ponce et al. (1997). They also discussed how Horton 120 

introduced the “index of turbulence”, 
� (���)�  �= � (����)�(���)  , which ranges from 0 to 1, by 121 

combining the power-law storage function with the Manning’s equation of sheet flow under the 122 

wide channel assumption. An index of turbulence of 0 results from ! = 3 (� = ��) and 123 

corresponds to laminar flow whereas an index of 1 results from ! = #�  ( � = �# ) and indicates 124 

turbulent flow. The analytical solution for the Horton-Izzard model exists only for rational 125 

values of ! and closed-form solutions existed only for specific values of ! (Gill, 1977, 1976; 126 

Jolley and Wheater, 1997; Moore et al., 2005; Moore and Bell, 2002, 2001). For this reason, 127 

researchers and practitioners have frequently been forced to approximate m and optimize �. For 128 

instance, the Thames Catchment Model (Young, 1997) uses the analytical solution to the 129 

quadratic storage model (
 = 1/2). The PDM model (Young, 1997) uses an approximate 130 

recursive solution based on a piecewise linear difference equation to solve the cubic storage 131 

function (
 = 2/3). Meert et al. (2016) also used a piecewise linearization approach. The 132 

general solution removes such approximations and complications. The subsections below 133 

provide the exact solutions for Eq. (5) and, by extension, the Horton-Izzard nonlinear storage 134 

equation. 135 

2.1. Outflow smaller than non-zero inflow  136 

Introducing & = � �⁄   and using separation of variables, we may rewrite Eq. (5) as follows 137 

for a sufficiently short time interval over which the inflow � may be assumed constant: 138 

�&&�(1 − &) = ����� (6) 
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To integrate the left-hand side (LHS) of Eq. (6), we note that the denominator therein is the 139 

integrand of the incomplete beta function (IBF) (Dutka, 1981):  140 

()(*, ,) = - ./��(1 − .)0��)
1 �., 0 ≤ 4 < 1 (7) 

where * and 6 are either positive real numbers or negative integers (Al-Sirehy and Fisher, 141 

2013). Assigning * = 1 − � and , = 0 in Eq. (7), substituting � �⁄  for & in the LHS of Eq. (6) 142 

and prescribing �(�1) = �1 as the initial condition (IC) of Eq. (5), we obtain the following 143 

exact implicit solution for �: 144 

(7/8(1 − �, 0) − (79/8(1 − �, 0) = ���(� − �1), �1 < � (8) 

With � = 1 − 
, the above solution may be expressed in terms of the exponent 
 in the storage-145 

discharge relation. Note that the real-world domain of 
 > 0 matches the mathematical domain 146 

of � < 1 as required by the IBF. 147 

Eq. (8) may be used to obtain the outflow � due to an arbitrary inflow hydrograph � 148 

discretized into a series of constant pulses �;<. Solving for � in Eq. (8) amounts to nonlinear root 149 

finding for which one may use a combination of look-up tables for evaluation of the IBFs and 150 

iterative numerical algorithms (Al-Sirehy and Fisher, 2013). Once the calculation for a pulse of 151 

inflow is complete, one may continue to the next pulse, �;<=>, with �1 and �1 in Eq. (8) 152 

reinitialized. Because ()(*, ,) is real-valued for 0 < 4 < 1 only, Eq. (8) is applicable only if 153 

�1 < �;<. If the outflow exceeds the constant inflow, it is necessary to use a second solution, 154 

which is described below. 155 

2.2. Outflow larger than non-zero inflow 156 

When the initial value of outflow, �1, is larger than the constant inflow �, a change of 157 

variable of &∗ = � �⁄  may be used to rewrite Eq. (5) in terms of &∗ as follows: 158 
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�&∗&∗���(1 − &∗) = ����� (9) 

Assigning * = � and , = 0 in Eq. (7), substituting � �⁄  for &∗ in the LHS of Eq. (9), and 159 

prescribing �(�1) = �1 as the IC, one arrives at the following exact implicit solution for � > �: 160 

(8/7(�, 0) − (8/79(�, 0) = � ��(� − �1), � > � (10) 

2.3. Zero inflow 161 

When there is no inflow, i.e.  � = 0, the analytic solutions above are no longer applicable. 162 

Instead, one may simplify Eq. (5) to: 163 

���� = −���@� (11) 

Eq. (11) may be integrated via separation of variables to yield the following exact solution for � 164 

which represents the recession curve for nonlinear reservoir with a general power-law storage 165 

function: 166 

�(�) = A 1�1� + ��(� − �1)C���
 (12) 

Once � is determined, the associated storage may also be evaluated by integrating Eq. (4): 167 

�(�) = �1 + ���� − �1����(1 − �)  (13) 

where �1 denotes the initial storage. Eq. (13) is useful for checking for the full capacity 168 

condition when there exists an upper bound to the physical storage space.  169 

2.4. Special case of integer b values 170 

For integer values of the exponent b, simpler solutions exist via the extension of the 171 

conventional IBF (Özçaḡ et al., 2008): 172 
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()(D, 0) = − EF(1 − 4) −  G 4HI
J��
HK�  

 

(14) 

()(−D, 0) = EF 41 − 4 − G 4�HIJ
HK�  

 

(15) 

where D = 1, 2, ⋯. When b is an integer, Eqs. (14) and (15) may be used to replace the LHS of 173 

Eqs. (8) and (10). The right-hand side of Eqs. (14) and (15) are a generalization of the 174 

previously known analytical solutions of Moore and Bell (2002). A commonly encountered but 175 

particularly interesting case is when � = −1 as in reservoirs with linear storage-elevation 176 

relationships and a single orifice or submerged sluice gate outlet. Using Eq. (15), one may show 177 

that the nonlinear routing with power-law storage function has a compact explicit analytical 178 

solution expressed in terms of the Lambert W function, M( ) (Corless et al., 1996): 179 

�(�) = � N1 + M O(�1 − �)P79�Q(;�;9)�88� RS (16) 

 Known also as the Lambert–Euler omega function (Pudasaini, 2011), the Lambert W function 180 

appears in the solution of many real-world problems (Corless et al., 1996; P. et al., 2000; Scott 181 

et al., 2006). It is worth noting that the Lambert W function has also been used in the similarity 182 

solution of the Richards equation, explicit expressions for Green-Ampt infiltration rate (Barry et 183 

al., 1993; Li et al., 2015; Parlange et al., 2002 to name a few), exact solutions for debris and 184 

avalanche flows (Pudasaini, 2011) and shallow flow in sloping unconfined aquifers (Barnes, 185 

2018). 186 
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3. Storage function parameters 187 

To use the above solution, it is necessary to specify the parameters � and �. Except when 188 

simple geometries are involved, the best approach in most practical applications is to calibrate 189 

them using observed inflow and outflow (see Wittenberg, 1994) . For those cases with known 190 

simple geometries or where calibration is not possible, theoretical expressions may be used. This 191 

section presents the theoretical parameters for widely used reservoir and channel routing 192 

applications. 193 

3.1. For reservoir routing 194 

The storage-elevation relationship is assumed to follow the power-law function below: 195 

� = �� + TUV , U ≥ 0 (17) 

where �� (m3) denotes the reservoir volume below the outlet, U(m) denotes the elevation above 196 

the outlet, and T and X denote the power-law parameters approximating the volume of the 197 

reservoir above the outlet. In the following, �� is assumed zero for the sake of simplicity. The 198 

width of the reservoir above the outlet structure, Y (m), is also assumed to follow a power-law 199 

function: 200 

Y = ω1U[> ,   ω1 > 0 �F�  ω� ≥ 0 (18) 

The reservoir's cross-sectional area, \] (m2), may be obtained by integrating Y over U: 201 

\] = ω11 + ω� U�@[> , U ≥ 0 (19) 

The storage-elevation relationship of Eq. (17) may now be written as: 202 

� = \]�) = �)ω11 + ω� U�@[> , U ≥ 0 (20) 
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where �) (m) denotes the longitudinal dimension of the reservoir. To describe the outflow as a 203 

function of flow depth, a power-law rating curve is used: 204 

� = 1̂U_> , U ≥ 0 (21) 

If the reservoir has an overflow spillway, its outflow follows the weir equation (Chanson, 2004) 205 

with 1̂ = �� `a�bc2d  and �̂ = 1.5 where `a denotes the coefficient of discharge, �b(m) denotes 206 

the length of spillway perpendicular to direction of flow, and g denotes the gravitational 207 

acceleration (~ 9.81 !/f�). If the reservoir has an orifice spillway, its outflow follows the 208 

orifice equation (Chanson, 2004) with 1̂ = `a\1c2d and �̂ = 0.5  where \1 (m2) denotes the 209 

area of the orifice. Substituting Eq. (21) in Eq. (4), differentiating the LHS with respect to �, and 210 

equating with the RHS, one has for the storage function parameters � and �: 211 

� = _>_9
g>=>h>ijk9  , and � = 1 − k>@�_>  (22) 

Notice that the combination of l� = 0 (i.e. linear storage-elevation relationship) and �̂ = 0.5  212 

(e.g. orifices or submerged openings in sluice gates) results in � = −1 for which the nonlinear 213 

routing problem with power-law function admits the explicit solution of Eq. (16) in terms of the 214 

Lambert W function.  215 

3.2. For channel routing 216 

The Horton-Izzard equation has been widely used to model overland flows (Moore and Bell, 217 

2001). If the simplifying assumption of level pool routing is justified (see, e.g., Fread and Hsu, 218 

1993 for criteria), the power-law storage function may be derived for channel routing using the 219 

hydraulic properties of channels as described below. The flow resistance equation for wide 220 

channels combines the geometric properties of the channel cross section and flow properties 221 

(Menabde and Sivapalan, 2001; Yen, 2002): 222 
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6 = m1no>�1op  (23) 

where 6 (m/s) denotes the mean velocity, n (m) denotes the depth, and �1 (m/m) denotes the 223 

slope. In the above, m1 , m�, and m� are the flow resistance equation coefficients given by m1 =224 

1/F, m� = 2/3, and m� = 1/2 for the Manning’s equation, m1 = `, m� = 1/2 and m� = 1/2 for 225 

the Chezy equation, and m1 = c8d/r , m� = 1/2 and m� = 1/2 for the Darcy-Weisbach 226 

equation where F (s/ m1/3), `  (m1/2/s) , and r (dimensionless) denote the respective roughness 227 

coefficient. The cross-sectional area of the channel, \ (m2), is approximated by a power-law 228 

function: 229 

\ = �1nQ>  (24) 

where �1 and �� are the parameters of the power-law cross section. For example, for a 230 

rectangular channel, �1 is the width of the channel and �� is unity. The discharge is given by the 231 

continuity equation: 232 

� = \6 = �1m1nQ>@o>�1op  (25) 

Solving Eq. (25) for the depth n gives: 233 

n = s ��1m1�1opt �Q>@o>
 (26) 

Assuming that the change in depth over the channel is not very large and the unsteadiness of 234 

flood wave has a wavelength larger than the channel length � (m), the storage, � (m3), in the 235 

channel is given by (McCuen, 2004): 236 

� = \� = �1�nQ>  (27) 

Substituting Eq. (26) in Eq. (27) and rearranging, one has for �: 237 
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� = �m1 �Q>Q>@o>�1 o>Q>@o>�1�Q>opQ>@o>� Q>Q>@o>  (28) 

Using Eq. (28), one may write the parameters � and � in Eq. (4) as: 238 

� = �� + m���� m1 Q>Q>@o>�1 �o>Q>@o>�1 Q>opQ>@o> , �F� � = m��� + m� (29) 

In the above development, the parameters � and � are determined by the flow resistance equation 239 

of choice. In practice, they may be prescribed empirically based on actual observations. For 240 

hillslope flow, there may not exist the necessary physiographic information to prescribe the 241 

parameters. In such cases, one may use the fractal relationships if self-similarity holds for the 242 

hillslope networks (Menabde and Sivapalan, 2001). 243 

4. Approximate explicit solutions 244 

The exact solution, Eq. (8), is in an implicit form. For practical applications, an explicit 245 

solution, which requires inversion of the IBF, is highly desirable. To the best of authors' 246 

knowledge, a compact explicit approximation does not exist for the inverse of the IBF. In this 247 

section, we offer symbolic approximations instead. The above inverse problem is equivalent to 248 

finding the function u = Ψ(w, �) such that: 249 

(x(1 − �, 0) = w (30) 

The nonlinear routing problem is thus transformed into evaluating the Ψ function in the 250 

following expression: 251 

�(�)� = Ψyβ79/8(1 − �, 0) + ���(� − �1), �{ (31) 

Below, we approximate Ψ( ) to solve nonlinear routing with power-law storage explicitly.  252 
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4.1. Compact expression for rising limb 253 

To the best of our knowledge, approximations of the inverse of the IBF have not been 254 

reported in the literature. In this work, we use the following approximate inverse function 255 

developed via symbolic regression analysis.  When the initial outflow is smaller than the inflow, 256 

i.e., 0 <  w = 7(;)8  <  1, we may approximate Ψ_(w, �) with: 257 

Ψ_(w, �) = erf | 1}1 + }�w~p� , 0 <  w = �(�)�  <  1 (32) 

where erf( ) denotes the error function, and }�, }�, and }� denote the coefficients to be 258 

prescribed. For −4 <  � <  0.01, Eq. (32) may be evaluated with a maximum error of 0.004 259 

using the following symbolic solutions for p1 to p�: 260 

p1 = 0.00330406b� + 0.0385704b� + 0.246985b + 0.261149 (33) 

}� = 0.00363074�� + 0.0494253�# + 0.270008�� 
        +0.763024�� + 1.20429�� + 1.00517� + 1.29167 

(34) 

}� = −0.00130776�� − 0.0185418�# − 0.107914�� 
−0.339224 �� − 0.652824�� − 0.869868� − 0.9324260 

(35) 

For 0.01 <  � <  0.7, Eq. (32) has a maximum error of 0.007 when p1 to p� are given by: 261 

}1 = 0.101487�� + 0.251458� + 0.264601 (36) 

}� = exp(38.27�� − 35.5156�� + 14.4538�� − 0.665017� + 0.313546) (37) 

}� = − exp(1.60103�� − 0.372287�� + 1.15131� − 0.0738377) (38) 

Because the level pool assumption puts the peak outflow on the inflow hydrograph, Eq. (32) may 262 

be used to approximate the peak outflow due to a constant inflow �a (m3/s), with duration �a (s). 263 

For example, if the reservoir is initially empty, the peak outflow of �~(m3/s) satisfies:  264 
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�~�a = erfA 1}1 + }�y��a��a{~pC (39) 

The peak storage �~ (m3) may be approximated using Eq. (13) as: 265 

�~ = �1 + serfs 1}1 + }�y��a��a{~pt �at��� − �1���
�(1 − �)  

(40) 

4.2. Series expansions for rising and falling limbs 266 

Following Dominici (2005), an approximate expression for the inverse of the IBF may be 267 

obtained by a series expansion in the neighborhood of valid w1. This approach utilizes the nested 268 

derivative operator defined as: 269 

��[r](4) = ��4 [r(4) � ����[r](4)] (41) 

with �1[r](4) = 1. Accordingly, the inverse function values for the rising and falling portions 270 

of the solution, Ψ�( ) and Ψ�( ), respectively, are given by: 271 

Ψ_(w, �) = w1 + r�(w1) G ����[r�](w1) �w − (�9(1 − �, 0) �
�!��� ,

r�(w1) = (1 − w1)w1� 

(42) 

Ψ�(w, �) = w1 + r~(w1) G �����r~�(w1) �w − (�9(�, 0) �
�!��� ,

r~(w1) = (1 − w1)w1��� 

(43) 

Care should be taken in choosing w1 to ensure r� and r� have non-zero real values at that point. 272 

A faster but less accurate method is to choose a fixed w1 throughout the entire simulation. A 273 

generally more accurate approach is to update w1 at each time step with the latest known value 274 

from the previous time step. Another important factor in applying Eqs. (42)  and (43) is the 275 
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number of terms summed in the partial series. Fig. 1 shows the difference between the exact and 276 

approximated values of the inverse of the IBF for Ψ_(w, �) with w1 = 0.75. The figure indicates 277 

that even a small number of terms in the series sum yields accurate results if the time increments 278 

are chosen for w to remain relatively close to w1. 279 

5. Applications  280 

This section presents four simple applications of the above solutions to different types of 281 

routing problems. The first and second show the ability of the proposed solution in simulating 282 

laboratory-observed flows in reservoir and channel, respectively. The third uses the proposed 283 

solution for real-world river flood routing and compares with the observed flow and the S-V 284 

solution. The last application uses the approximate explicit solution for detention pond design. 285 

5.1. Reservoir routing with orifice spillway 286 

The laboratory data from Kilduff (2002) are used to validate the proposed solution. In this 287 

application, a constant inflow of 12.3 mL/s is applied to a cylindrical reservoir with a base area 288 

of 71 cm2. The inflow is kept constant for a duration of 300 seconds and then shut off 289 

completely. The water surface elevation is observed above a 0.4 cm orifice with  U = 7p��.��� 290 

where U denotes the elevation above the outlet in m! and � denotes the discharge in m!�/f. 291 

Using Eqs. (21) and (22), one has � = 0.13473 (m!�f��) and � =  −1. Solving Eq. (8) for U 292 

with a time step of 5 seconds, we have the adjusted coefficient of determination ��� of 0.993 with 293 

the observed water surface elevation (see Fig. 2). In the figure, there exists an outlying observed 294 

water level. Given that this case study is a simple laboratory experiment with well-known 295 

behavior, the outlier is likely to be an observational error. Since � =  −1, Eq. (16) is applicable 296 

in this example and the routed hydrograph can be obtained implicitly in terms of the Lambert W 297 
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function as �(�) = 12.3(M(−0.36788P�1.1�1�#;) + 1) for � < 300. After the inflow is shut off, 298 

Eq. (12) gives �(�) = 52.54739  − 0.13473� for 300 ≤ � < 390. Note that in this application 299 

the explicit analytical solution of Eq. (16) results in peak water level of 74.86 cm which is very 300 

close to the observed value of 75.03 cm. For comparison, the compact approximate solution of 301 

Eq. (32) yields a peak water level of 76.32 cm.  302 

5.2. Level pool channel routing with significant floodplain storage 303 

De Martino et al. (2012) assessed the assumption of level pool routing in an experimental 304 

channel. They confirmed via extensive experimental investigations that the level pool 305 

assumption may be reliably applied for floodplain storage and concluded that vegetation and 306 

channel bottom irregularities are larger sources of uncertainties in flood modeling than the level 307 

pool assumption. They also deduce that simple storage-based methods such as the ones presented 308 

in this paper are preferred for preliminary sizing of floodplain storages in flat areas. In the 309 

following, we validate the proposed solutions using the data from the out-of-bank portion of one 310 

of their experiments where the power-low equations hold true. In this test, the flow is out of bank 311 

during the period of 52 to 350 seconds. With the floodplain storage area of \ = 29.12 !�, the 312 

storage-elevation relationship is linear with � = 29.12 U. The outlet is a sluice gate with a 0.05 313 

m opening. Using Eqs. (18) through (22), one arrives at � = 6.98 � 10�# (!�f��) and � =  −1. 314 

Based on these values, the explicit solution of Eq. (16) is used with a time step of 10 seconds to 315 

predict the observed flows with ��� = 0.951 as shown in Fig. 3. Note that, from 52 to 212 316 

seconds, the inflow is effectively constant for which the average value is 0.066 m3/s. Given the 317 

initial outflow of 0.035 m3/s, the Lambert W function-based explicit solution of Eq. (16) is able 318 

to predict the peak observed outflow of 0.043 m3/s with only one calculation step. 319 
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5.3. Channel routing 320 

In this example, a flash flooding event in a natural waterway was chosen from Akbari and 321 

Barati (2012). The channel has width of 10 m, slope of 0.0012, length of 25 km, and Manning’s 322 

roughness of 0.035 s/ m1/3.  For this event, the observed inflow and outflow hydrographs are 323 

available as well as the S-V solution which is used here for additional comparison. Fig. 4 shows 324 

that the proposed solution with calibrated parameters of � = 4.25 � 10�� (!�1.#���f�1.�11�)  325 

and � = 0.1994 , and a time step of 1 min is able to simulate the observed flows extremely 326 

closely (��� = 0.997). Overall, the nonlinear storage routing compares well with the S-V 327 

solution. Not surprisingly, however, the shape of the hydrograph and the peak flow are less 328 

accurate than the S-V solution due to the level pool assumption which forces the peak outflow on 329 

the inflow hydrograph.  330 

5.4. Detention pond design 331 

In this application, the approximate explicit solution of Eq. (39) is used to design a detention 332 

pond. The pond has a 10 m-by-5 m rectangular base. It is desired to size an orifice outlet to 333 

reduce peak outflow for a 0.25 m3/s inflow. The approximate solution of Eq. (39) may be used to 334 

estimate the reduction in peak outflow. The peak storage curves (see Fig. 5) obtained from Eq. 335 

(40) may be used to verify that the maximum available physical storage is not exceeded. 336 

Alternatively, given the dimensions of the pond and the orifice outlet, one may approximate the 337 

combined effect of changes in the magnitude and duration of inflow on the peak outflow. Fig. 6 338 

shows the results with a 0.5 m-diameter outflow orifice. 339 
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6. Discussion 340 

The main purpose of this study is to provide new analytical solutions for level pool routing 341 

with general power-law storage-discharge relationship, and to advance the theory of nonlinear 342 

hydrologic routing. A number of examples are presented to demonstrate the utility of the 343 

analytical solutions in a wide range of practical applications. If accuracy is of primary concern, 344 

the analytical solutions of Eqs. (8), (10), and (16) should be favored over numerical solutions. 345 

The choice of the routing method, however, depends on many other factors such as the validity 346 

of the underlying assumptions, nonlinearity of flow, availability of both real-time and historical 347 

data, parsimony desired, ease of implementation, and computational requirements and resources 348 

available. The relative importance of these factors is very often application-specific and hence 349 

the choice of the solution approach may vary significantly. Below we elaborate on the 350 

assumptions and limitations for the proposed solutions and offer computational considerations 351 

for implementation to aid such decision making. For comparisons among different numerical 352 

flood routing methods, the reader is referred to Strelkoff (1980), Ponce et al. (1997) and Ponce 353 

(2014). 354 

Power-law storage function is a fundamental assumption for the presented solutions. As 355 

described in Section 3, these parameters represent the geometry and hydraulics in the storage-356 

discharge relationship. In applying the solutions presented in this work, it is important that the 357 

power-law definitions are consistent with the formulations in Section 3 as alternative 358 

formulations are also possible. Note also that the solution presented is limited to the elevations 359 

above spillway, i.e., the surcharge storage (Viessman and Lewis, 2008). Power-law storage 360 

function is generally not consistent with multiple types of outlet structures but may still provide 361 

acceptable approximation. 362 
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If the power-law storage-discharge relationship is not sufficiently well modeled by a single set 363 

of coefficients, it may be necessary to employ multiple sets of the parameter estimates for local 364 

approximation. Such approaches are routinely practiced in operational river routing in the form 365 

of layered coefficient routing (Fread, 1985; NWS, 2021b). As such, the power-law assumption is 366 

not as large a limiting factor as it may first appear. As is often the case in practice, one may 367 

improve the accuracy by calibrating the two coefficients, or adjusting the a priori estimates 368 

obtained from the geometric and hydraulic considerations, based on observed hydrographs when 369 

and where available. It is also noted here that the IBF solution offers a potentially significant 370 

advantage in gradient-based parameter optimization over other numerical routing techniques 371 

because the derivatives can be evaluated very accurately. 372 

The proposed solutions assume a level pool reservoir. It is widely accepted that level pool 373 

routing is more appropriate for smaller reservoirs with rounder shape where backwater effects 374 

are not significant (Chow et al., 1988; Ionescu and Nistoran, 2019). Level pool routing is also 375 

widely used for channel routing for which a reach is subdivided into a series of level pools with 376 

prescribed storage-discharge relationships (USACE, 2021). The degree of attenuation in the 377 

routed flood wave may vary depending on the number of sub-reaches chosen, which is often 378 

treated as a calibration parameter (Bonner, 1990; USACE, 1994). Level pool routing, and hence 379 

the proposed solutions, are not recommended for streams with gradients less than ~ 0.0004 380 

to.0006, reaches with time-varying boundary conditions such as tides or rapidly rising flood 381 

hydrographs (Bonner, 1990; USACE, 1994).  382 

The assumption of constant inflow is of little practical significance because the observed and 383 

simulated inflow hydrographs are already discretized according to the sampling interval of the 384 

instrument and the time step of the simulation, respectively. If the hydrograph is over-sampled 385 
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such that the discharge varies very little over a short time period, one may coarsen the 386 

discretization to reduce the number of IBF evaluations. In such a case, the level of discretization 387 

should be chosen such that the sampling frequency captures the variations and peakedness in the 388 

inflow hydrograph. 389 

The analytical solution requires evaluation of the IBF. If the IBF is not available as a built-in 390 

or intrinsic function in the user’s computing environment, one may use external mathematical 391 

libraries (see for example http://www.meta-numerics.net/ and https://www.boost.org/). The main 392 

computing requirement for the analytical solution comes from solving for � in the implicit 393 

expressions of Eqs. (8) and (10). The above nonlinear root finding problem may be solved using 394 

a number of readily available techniques (Faires and Burden, 2012). A potential difficulty in the 395 

above solution is slow convergence near the poles of the IBF but may be avoided by using 396 

derivative-free techniques. For example, with the bisection method (Faires and Burden, 2012), a 397 

conservative estimate for the number of iterations required to determine � is log� �|8�79|� i  + 1 398 

where �¡� is the desired tolerance (Faires and Burden, 2012). Though there may exist more 399 

efficient methods, the bisection method is very attractive for the IBF, a strictly monotonically 400 

increasing function, owing to its simplicity and the availability of the a priori estimate for 401 

convergence. 402 

Because the proposed solution is analytical, one does not have to be concerned about 403 

numerical errors or diffusion, and may hence expect to obtain extremely accurate solutions. To 404 

illustrate, below we offer a comparison of the proposed solution with a number of numerical 405 

integration schemes for an inflow hydrograph shown as a series of pulses in Fig 7. The example 406 

hydrograph is based on Fenton (2010) in which a small reservoir with square base of 100 m by 407 
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100 m and a weir outlet with a width of 4 m is subjected to an inflow hydrograph of the 408 

following general form: 409 

�(�) =  �1 + y�~ − �1{ s ��~  P|�� ;�¢�t#
 (44) 

 410 

where �1 is the initial inflow of 1 m3/s, �~ is the peak inflow of 20 m3/s, and �~ is the time to peak 411 

of 30 min. It follows from Section 3.1 that � is 0.000554 m3s-2 and � is 0.31927. The above 412 

hydrograph is resampled at an interval of 300 s to emulate a discrete observed hydrograph in the 413 

real world. An accurate Method of Lines numerical solution with high-resolution adaptive mesh 414 

(Hamdi et al., 2007; Wolfram, 2021) is used to obtain the reference ‘true’ outflow hydrograph 415 

(see Fig 7). We then used the different solution methods shown in Table 1 to route the inflow 416 

hydrograph at time steps of 10, 30 and 60 s. The small time steps were chosen to ensure that the 417 

variations in the inflow hydrograph are captured for all solution techniques considered. 418 

Fig. 7 shows the results for the analytical solution with £� = 60 s vs. the reference truth. As 419 

expected, they are indistinguishably close. Table 1 shows the maximum errors in percent in the 420 

proposed and numerical solutions for the duration of the hydrograph. Because all three time steps 421 

are smaller than the sampling interval of the inflow hydrograph (i.e., 300 s), the analytical 422 

solution results are effectively the same for all time steps. The maximum errors in the numerical 423 

solutions, on the other hand, show significant sensitivity to the time step and vary significantly 424 

among themselves. It is seen that the higher-order solutions tend to be more accurate among the 425 

numerical solutions, and that the proposed solution is far more accurate than any of the 426 

numerical solutions even at the smallest time step of 10 s. 427 

Time Step £� = 10 s £� = 30 s £� = 60 s 
Incomplete Beta Function (Proposed Solution) -0.000076% -0.000076% -0.000076% 
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Euler (Order=1) -3.159% -8.931% -16.43% 
Midpoint (Order=2) -0.00469% -0.04219% -0.1687% 
Runge-Kutta (Order=2) -1.589% -4.497% -8.277% 
Runge-Kutta (Order=3) -0.5298% -1.503% -2.788% 
Runge-Kutta (Order=4) 0.1123% 0.9001% 3.05% 

Table 1- Maximum error of routing solution for the test inflow shown in Fig 7. 428 

7. Conclusions and future research recommendations 429 

An exact implicit solution for nonlinear reservoir routing with a general power-law storage 430 

function is presented. Expressed in terms of the incomplete beta function (IBF), the solution is 431 

valid for inflow hydrographs that may be represented by a series of pulses of arbitrary widths. 432 

The solution thus extends the existing analytical solutions reported in the literature which are 433 

valid only for specific exponents in the power-law storage function. For reservoirs with linear 434 

storage-elevation relationship and a single orifice or submerged sluice gate outlet, an explicit 435 

compact solution expressed in terms of the Lambert-W function is presented. To facilitate the 436 

application of the new solution to reservoir and channel routing, the two power-law storage 437 

function parameters are expressed in terms of the geometry of the reservoir, rating curve, and 438 

flow resistance. The exact solution applies only for constant inflow and is in an implicit form for 439 

the general case. For practical applications, several highly-accurate, approximate explicit 440 

solutions are also presented. To demonstrate the accuracy and utility of the new solutions, four 441 

simple applications are presented for reservoir routing, channel routing, and detention pond 442 

design. Being exact, the new solution is not subject to numerical errors or instabilities. It is 443 

therefore particularly useful in nonlinear routing applications when accuracy is of particular 444 

importance. The solution may also be useful in network or system optimization as well as design 445 

analysis that requires derivatives. 446 
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List of Figure Captions 

Fig.1.  An example of approximation error for various number of terms of Eq. (42) for X 0 =0.75 and b=-

0.67.  

Fig.2.  Calculated and observed water levels of Example 1. 

Fig.3.  Comparison of calculated outflows with observed values of Example 2.  

Fig.4.  Comparison of the proposed solution vs. S-V solution for Example 3.  

Fig.5.  Peak storage as a function of inflow duration and orifice diameter.  

Fig.6.  Peak flow as a function of inflow duration and inflow magnitude. 

Fig.7.  An example inflow function was produced by resampling Eq. (44) to emulate a discrete observed 

hydrograph in the real world. The results from the proposed analytical solution applied at Δt=60 s 

intervals can closely simulate the accurate benchmark solution.  
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